Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Ssarcophaga crassipalpis.
نویسندگان
چکیده
Partial clones of the Sarcophaga crassipalpis heat shock protein 70 (hsp70) and of heat shock cognate 70 (hsc70) were developed by RT-PCR and library screening respectively. These clones were used to probe total RNA northern blots for the expression of transcripts in response to high and low temperature stress and in conjunction with the entry into an overwintering pupal diapause. In nondiapausing individuals, hsp70 was highly expressed in response to a 40 degrees C heat shock, while hsc70 was unaffected by the heat stress. In contrast, both hsp70 and hsc70 were upregulated in nondiapausing flies following a -10 degrees C cold shock. In diapausing pupae, hsp70 was highly upregulated during diapause, even at a non-stress temperature of 20 degrees C. Upregulation was initiated at the onset of diapause and persisted throughout diapause. During diapause, heat shock did not further elevate the level of hsp70 expression. Within 12 h after diapause was terminated, hsp70 ceased to be expressed. The expression of hsc70 was unaltered by diapause. The developmental regulation of hsp70 in relation to diapause suggests a critical role for this stress protein during insect dormancy.
منابع مشابه
Diapause-specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis.
Several cDNAs isolated from brains of diapausing pupae of the flesh fly, Sarcophaga crassipalpis, show expression patterns unique to diapause. To isolate such cDNAs a diapause pupal brain cDNA library was screened by using an elimination hybridization technique, and cDNAs that did not hybridize with cDNA probes constructed from the RNA of nondiapausing pupae were selected for further screening....
متن کاملUp-regulation of heat shock proteins is essential for cold survival during insect diapause.
Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of a...
متن کاملOleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis.
The integrity of cellular membranes is critical to the survival of insects at low temperatures, thus an advantage is conferred to insects that can adjust their composition of membrane fatty acids (FAs). Such changes contribute to homeoviscous adaption, a process that allows cellular membranes to maintain a liquid-crystalline state at temperatures that are potentially low enough to cause the mem...
متن کاملBiphasic metabolic rate trajectory of pupal diapause termination and post-diapause development in a tephritid fly.
Metabolic depression is a highly conserved feature of insect diapause, and an increase in metabolism is a reliable indicator of diapause termination and the initiation of post-diapause development. The trajectory of metabolic rate following diapause termination can guide the identification of important physiological and developmental landmarks during this developmental transition, yet quantitat...
متن کاملClock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis.
While roles of the clock genes period (per) and timeless (tim) are relatively well understood in relation to circadian clocks, their potential roles in insect photoperiodism remain enigmatic. In this study, the expression of per and tim genes under two contrasting photoperiods is described in the central nervous system of photoperiodically sensitive, newly hatched first instar larvae of the fle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Insect biochemistry and molecular biology
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2000